ECEN 449 Laboratory Policies and Report Format

1 Instructions for Lab Session

1. You must download each week’s lab manual posted on the course website prior to coming to lab.

2. Some students may have to partner up for lab depending on the availability of equipment. Switching partners throughout the semester is allowed and even encouraged. However, each student must submit their own lab report.
 Note: Plagiarism is not allowed even amongst lab partners (see Section 4 for more information).

3. Each laboratory exercise has a design component which you must complete and demonstrate to your TA prior to the next lab session in order to receive full credit. The grading procedure for the demos is as follows:

 Demo Works during the lab: If the demo works during the lab period, call your TA, and he/she will check it. You should then save your design files in your home directory before leaving the lab. You will get completion credit for the demo; however, you must include the source code in your report (i.e as in-line text within the Body of the report or in an Appendix).

 Design does not work: If the design does not work by the end of the lab period, you must make use of the open times for the lab room to complete your design. Remember your lab demos and report are due by the next lab session. Thus, you can present your work during the start of the next lab session. Please include your source code in your report before coming to the next lab session.

 Please note that you are guaranteed a computer and workspace in the lab room only during your lab period. If another lab section is in progress, ask the TA if he/she has any open lab stations.

4. Attendance at your regularly scheduled lab period is required. Your demos during the lab session will automatically count towards your attendance.
2 Instructions for Post-Lab Report

1. You must submit a post-lab report that captures your efforts during the lab.
 Note: Your lab report should be detailed enough such that another engineer with a similar skill set could easily reproduced your results.

2. Each lab manual provides a break-down of points for the various sections of your lab report. Pay close attention to the number of points each portion is worth.

3. Your post-lab report must be of standard report format and include a Title Page, Introduction, Body (i.e. Procedures and Results), and Conclusion.

4. Other items such as simulator output files requested in the lab manual must be included in the report submission.

5. Specific questions asked in the lab manual should be answered completely in your post lab report.

6. Source code (i.e. Verilog and C files) must be included in the lab report. Code may be placed in-line within the Body of the report or included in the Appendix section of the report.

7. Submit a hard copy to TA or submit via email to atarghel@tamu.edu by the beginning of the next lab session.

3 Late policy for Post-lab

All post-labs and demos are due before the beginning of the next lab session. Late post-labs and/or demos will not be accepted except in the case of a prior arrangement made with the professor and/or TA.

4 Plagiarism Policy

Plagiarism is defined as taking someone else’s work, words, or ideas and using them as one’s own without citing their source. Be careful and abstain from copying someone else’s work, even if it is from previous semesters. This does not mean that you cannot compare results, on the contrary, is actually encouraged. You may explain your methods to other students, but do not let them copy your work. The consequences of such actions are severe.

5 Suggestions for Surviving and Enjoying Lab

1. Start lab exercises prior to the appropriate lab sessions. A large portion of each lab exercise will be fairly straightforward and clearly outlined in the lab manuals. You
want to have as much of these parts done prior to the lab session so you can spend the majority of the period on the design parts so that you can brainstorm with other students and the TA.

2. Attend course lectures regularly. The lectures and labs for this course are tightly coupled so you will not succeed in lab if you are not attending lecture and vice-versa. Additionally, assistance in lab will be prioritized to those who are attending lecture.

3. Read the reference material provided on the course website. When in doubt, look it up. A large portion of the skill set you will receive in the class has to do with learning where to find the information necessary to complete a design. In many cases, the references provided in this course will include examples that are very close to what is asked of you in lab.

4. Include figures provided in the lab manual in your Post-lab report. If a figure is included in the lab manual, it is an important part of the lab. Think of these figures as freebies! Remember that an illustration is worth a thousand words. If you can explain your design with a simple block diagram, whether found in the lab manual, provided for you on the board during a discussion, or taken from your imagination, use it and reference it within the body of your report. This will reduce the overall text required to adequately describe your design.

5. Try to use LaTeX for your lab reports. This is especially relevant if you are considering graduate work in the near future. LaTeX has a bit of a learning curve, but it is worth the investment. Once you have a basic understanding of how to compile a document, LaTeX will handle all of the formatting for you. If you need assistance with LaTeX, consult your TA.

 Note: The lab manuals and even this document have been created using LaTeX!

6. Spend a significant amount of time understanding the questions provided in lab. These questions test your ability to comprehend what is going on in lab.

7. Bring your completed lab reports and previous lab manuals with you to every lab session. The material in this course builds heavily upon itself. You will need to continually reference steps carried out in previous lab sessions. Taking notes as you go along may prove to be helpful!