Clock Distribution

Clocking

- Synchronous systems use a clock to keep operations in sequence
 - Distinguish *this* from *previous* or *next*
 - Determine speed at which machine operates

- Clock must be distributed to all the sequencing elements
 - Flip-flops and latches

- Also distribute clock to other elements
 - Domino circuits and memories
Clock Distribution

- On a small chip, the clock distribution network is just a wire
 - And possibly an inverter for clkb

- On practical chips, the RC delay of the wire resistance and gate load is very long
 - Variations in this delay cause clock to get to different elements at different times
 - This is called clock skew

- Most chips use repeaters to buffer the clock and equalize the delay
 - Reduces but doesn’t eliminate skew

Cycle Time Trends

- Much of CPU performance comes from higher f
 - f is improving faster than simple process shrinks
 - Sequencing overhead is bigger part of cycle
 - Things just got different recently after multi-core came along

![Graphs showing cycle time trends over years](image)
Solutions

- **Reduce clock skew**
 - Careful clock distribution network design
 - Plenty of metal wiring resources

- **Analyze clock skew**
 - Only budget actual, not worst case skews
 - Local vs. global skew budgets

- **Tolerate clock skew**
 - Choose circuit structures insensitive to skew

Clock Dist. Networks

- **Ad hoc**
- **Grids**
- **H-tree**
- **Hybrid**
- **Spines**
- Can consume +30% total chip dynamic power
Clock Grids

- Use grid on two or more levels to carry clock
- Make wires wide to reduce RC delay
- Ensures low skew between nearby points
- But possibly large skew across die

Alpha Clock Grids
H-Trees

- Fractal structure
 - Gets clock arbitrarily close to any point
 - Matched delay along all paths
- Delay variations cause skew
- A and B might see big skew

Itanium 2 H-Tree

- Four levels of buffering:
 - Primary driver in the center
 - Four Repeater on the leaves of H
 - Second-level clock buffers
 - Local gaters
- Route around obstructions
Hybrid Networks

- Use H-tree to distribute clock to many points
- Tie these points together with a grid
- Ex: IBM Power4, PowerPC
 - H-tree drives 16-64 sector buffers
 - Buffers drive total of 1024 points
 - All points shorted together with grid

Skew Tolerance

- Flip-flops are sensitive to skew because of *hard edges*
 - Data launches at latest rising edge of clock
 - Must setup before earliest next rising edge of clock
 - Overhead would shrink if we can soften edge

- Latches tolerate moderate amounts of skew
 - Data can arrive anytime latch is transparent
Summary

- Clock skew effectively increases setup and hold times in systems with hard edges

- Managing skew
 - Reduce: good clock distribution network
 - Analyze: local vs. global skew
 - Tolerate: use systems with soft edges

- Flip-flops and traditional domino are costly

- Latches and skew-tolerant domino perform at full speed even with moderate clock skews