MOS Transistor I-V Characteristics and Parasitics

Facts about Transistors

- So far, we have treated transistors as ideal switches
- An ON transistor passes a finite amount of current
 - Depends on terminal voltages
 - Derive current-voltage (I-V) relationships
- Transistor gate, source, drain all have capacitances
 - \(I = C \left(\frac{\Delta V}{\Delta t} \right) \rightarrow \Delta t = \frac{C}{I} \Delta V \)
 - Capacitance and current determine speed
- Also explore what a “degraded level” really means
MOS Capacitor

- Gate and body form a MOS capacitor
- Operating modes:
 - Accumulation
 - Depletion
 - Inversion

![Diagram of MOS Capacitor Modes]

Terminal Voltages for NMOS

- Mode of operation depends on \(V_g, V_d, V_s \)
 - \(V_{gs} = V_g - V_s \)
 - \(V_{gd} = V_g - V_d \)
 - \(V_{ds} = V_d - V_s = V_{gs} - V_{gd} \)
- Source and drain are symmetric diffusion terminals
 - By convention, source is the terminal at a lower voltage
 - Hence \(V_{ds} \geq 0 \)
- nMOS body is grounded.
- Three regions of operation
 - **Cutoff**
 - **Linear**
 - **Saturation**
nMOS Cutoff

- No channel
- \(I_{ds} = 0 \)

nMOS Linear

- Channel forms
- Current flows from d to s
 - \(\text{e}^+ \) from s to d
- \(I_{ds} \) increases with \(V_{ds} \)
- Similar to a linear resistor
nMOS Saturation

- Channel pinches off
- \(I_{ds} \) independent of \(V_{ds} \) (approximately)
- We say the drain current saturates
- Similar to a voltage controlled current source

\[V_{gs} > V_t \]
\[V_{gd} < V_t \]
\[V_{ds} > V_{gs} - V_t \]

I-V Characteristics

- In Linear region, \(I_{ds} \) depends on
 - How much charge is in the channel?
 - How fast is the charge moving?
Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate – oxide – channel
- \(Q_{\text{channel}} = CV\)
- \(C = \)
MOS structure looks like parallel plate capacitor while operating in inversion
- Gate – oxide – channel
- \(Q_{\text{channel}} = CV \)
- \(C = C_g = \varepsilon_{\text{ox}} \frac{W}{t_{\text{ox}}} = C_{\text{ox}} W \)
- \(V = V_{g} - V_t = (V_{gs} - V_{ds}/2) - V_t \)

\[C_{\text{ox}} = \frac{\varepsilon_{\text{ox}}}{t_{\text{ox}}} \]
Carrier velocity

- Charge is carried by e-
- Carrier velocity \(v \) proportional to lateral E-field between source and drain
 \[v = \mu E \]

\(\mu \) called mobility
Carrier velocity

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
 - $v = \mu E$
 - $E = \frac{V_{ds}}{L}$
 - μ called mobility
- Time for carrier to cross channel:
 - $t = \frac{L}{v}$
Now we know
- How much charge Q_{channel} is in the channel
- How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$
nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$

$$= \mu C_{ox} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \quad \beta = \mu C_{ox} \frac{W}{L}$$

nMOS Saturation I-V

- If $V_{gd} < V_t$, channel pinches off near drain
- When $V_{ds} > V_{dsat} = V_{gs} - V_t$
- Now drain voltage no longer increases current

$$I_{ds} =$$
nMOS Saturation I-V

- If $V_{gd} < V_t$, channel pinches off near drain
 - When $V_{ds} > V_{dsat} = V_{gs} - V_t$
- Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$

$$= \frac{\beta}{2} (V_{gs} - V_t)^2$$
nMOS I-V Summary

- **Shockley 1st order transistor models**

\[I_{ds} = \begin{cases}
0 & V_{gs} < V_t \quad \text{cutoff} \\
\beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} \quad \text{linear} \\
\frac{\beta}{2} (V_{gs} - V_t)^2 & V_{ds} > V_{dsat} \quad \text{saturation}
\end{cases} \]

Example

- For a 0.6 \(\mu m \) process
 - \(t_{ox} = 100 \) Å
 - \(\mu = 350 \) cm\(^2\)/V*s
 - \(V_t = 0.7 \) V
- Plot \(I_{ds} \) vs. \(V_{ds} \)
 - \(V_{gs} = 0, 1, 2, 3, 4, 5 \)
 - Use \(W/L = 4/2 \lambda \)

\[\beta = \mu C_W \frac{W}{L} = (350) \left(\frac{3.9 \times 8.85 \times 10^{-3}}{100 \times 10^{-6}} \right) \left(\frac{W}{L} \right) = 120 \frac{W}{L} \mu A/V^2 \]
pMOS I-V

- All dopings and voltages are inverted for pMOS
 - Source is the more positive terminal
- Mobility \(\mu_p \) is determined by holes
 - Typically 2-3x lower than that of electrons \(\mu_n \)
 - 120 cm²/V·s in AMI 0.6 μm process
- Thus pMOS must be wider to provide same current
 - In this class, assume \(\mu_n / \mu_p = 2 \)

Non-ideal I-V Effects

- Velocity saturation
 - Due to lateral E-field
- Mobility degradation
 - Due to vertical E-field
- Channel length modulation
- Leakage current
- Body effect
- Temperature dependence
- And many more...
Channel Length Modulation

- Ideally, I_{ds} is independent of V_{ds} in saturation
- Reverse-biased p-n junction between drain and body forms a depletion region with width L_d
- $L_{\text{EFF}} = L - L_d$
- L_d increases with V_{db} or V_{ds}
- I_{ds} increases slightly with V_{ds}

Velocity Saturation

- Ideally, carrier drift velocity increases linearly with lateral field (V_{ds}/L)
- If lateral field is very strong, the velocity saturated due to scattering
- α-power law model
- As velocity saturated, increasing V_{gs} has less effect
- As velocity saturated, no benefit to raise V_{DD}
Velocity Saturation

- Velocity saturation
- Impact of the lateral electrical field

\[\nu_n (\text{m/s}) \]

\[\xi_c = 1.5 \]

\[\xi (\text{V/\mu m}) \]

\[\nu_{sat} = 10^5 \]

Constant velocity

Constant mobility (slope = \(\mu \))

Velocity Saturation

- Velocity saturation

Long-channel device

Short-channel device

\[V_{GS} = V_{DD} \]

\[V_{DSAT} \]

\[V_{GS} - V_T \]

\[V_{DS} \]

Not \(V_{GS} - V_T \) !!!
Mobility Degradation

- Strong vertical field (V_{gs}) causes scattering, reduces carrier mobility
- Captured in α-power law model
 - By α

Short-Channel Effects (5)

- Mobility degradation
 - Impact of vertical electric field

![Graph showing mobility degradation](image)
Leakage Current

- **Subthreshold leakage**
 \[I_{ds} = I_{ds0} \cdot e^{\frac{V_{gs} - V_t}{mV_T}} \left(1 - e^{\frac{-V_{ds}}{V_T}} \right) \]
 - Thermal voltage: \(V_T = kT/q \) (@300K ~26mv) \(k \): Boltzmann’s constant

- **Junction leakage**

- **Gate tunneling**

Body Effect

- **\(V_{sb} \) affects threshold voltage**
 \[V_t = V_{th} + \gamma(\sqrt{2\phi_F} + V_{bs} - \sqrt{2\phi_F}) \]
 - \(\phi_F \): Fermi potential (in bulk)

- **Body voltage affects both speed and leakage**
 - Forward body bias (FBB)
 - Reverse body bias (RBB)
Temperature Dependence

- When temperature increases
 - Carrier mobility decreases, ON current decreases
 - Threshold voltage decreases, leakage increases

Capacitance

- Any two conductors separated by an insulator have capacitance

- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation

- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion
Gate Capacitance

- Approximate channel as connected to source
- \(C_{gs} = \varepsilon_{ox}WL/t_ox = C_{ox}WL = C_{permicron}W \)
- \(C_{permicron} \) is typically about 2 fF/\(\mu \)m

Diffusion Capacitance

- \(C_{sb}, C_{db} \)
- Undesirable, called *parasitic* capacitance
- Capacitance depends on area and perimeter
 - Use small diffusion nodes
 - Comparable to \(C_g \) for contacted diff
 - \(\frac{1}{2} C_g \) for uncontacted
 - Varies with process
Diffusion Capacitance

- We assumed contacted diffusion on every s/d.
- Good layout minimizes diffusion area
- Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

Activity

1) If the width of a transistor increases, the current will
 increase decrease not change
2) If the length of a transistor increases, the current will
 increase decrease not change
3) If the supply voltage of a chip increases, the maximum
 transistor current will
 increase decrease not change
4) If the width of a transistor increases, its gate capacitance will
 increase decrease not change
5) If the length of a transistor increases, its gate capacitance will
 increase decrease not change
6) If the supply voltage of a chip increases, the gate capacitance
 of each transistor will
 increase decrease not change
Activity

1) If the width of a transistor increases, the current will
 increase decrease not change
2) If the length of a transistor increases, the current will
 increase decrease not change
3) If the supply voltage of a chip increases, the maximum
 transistor current will
 increase decrease not change
4) If the width of a transistor increases, its gate capacitance will
 increase decrease not change
5) If the length of a transistor increases, its gate capacitance will
 increase decrease not change
6) If the supply voltage of a chip increases, the gate capacitance
 of each transistor will
 increase decrease not change